Products - Anatase Nanowires A2/IA2       
Research Grade
Industry Grade
Cat. No.
Production Description
Anatase nanowires IA2,
Industry grade
SEM image of NovaWire-ATiO-A2-RD
HOME                    PRODUCTS                       TECHNOLOGIES                       SERVICES                         ABOUT US
XRD of NovaWire-ATiO-A2-RD
Cat. No.
Production Description
Anatase nanowires A2,
Research grade
Average diameter: 100nm
Appearance: dry white powder
Crystalline phase: anatase/TiO2(B) mixed-phase

The products have unique physicochemical properties, such as non-toxicity, insolubility, high thermal
stability and chemical inertness, which ensure its great performance in high temperatures and other
harsh environments. And also it is a good semiconductor with high photoactivity. Moreover, it has
high refractive index and unique ability to reflect light, which allow it to be used in many optical
applications, e.g., imparting whiteness, brightness, and opacity to various end-use products.
Copyright © 2014 Novarials Corporation All rights reserved.

Anatase nanowires, anatase nanofibers, titanium oxide nanowires, titanium oxide nanofibers,
titanium oxide, titania nanowires, titania nanofibers, titania, titanium dioxide nanofibers, titanium
dioxide nanowires, titanium dioxide, titanium(IV) oxide nanowires, titanium(IV) oxide nanofibers,
titanium(IV) oxide, TiO
2 nanowires, TiO2 nanofibers, TiO2,  anatase nanowire, anatase nanofiber,
titanium oxide nanowire, titanium oxide nanofiber, titania nanowire, titania nanofiber, titanium
dioxide nanofiber, titanium dioxide nanowire, titanium(IV) oxide nanowire, titanium(IV) oxide
nanofiber, TiO
2 nanowire, TiO2 nanofiber

  1. In Sun Cho, Chi Hwan Lee, Yunzhe Feng, Manca Logar, Pratap M. Rao, Lili Cai, Dong Rip
    Kim, Robert Sinclair, Xiaolin Zheng,  “Codoping titanium dioxide nanowires with tungsten
    and carbon for enhanced photoelectrochemical performance”, Nature Communications,  
    2013, 4, 1723.
  2. Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B., “ Enhancing visible light
    photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3:
    synergistic effects between Ti3+ and N.”, J. Am. Chem. Soc., 2012, 134, 3659.
  3. Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung, Y. E., “
    Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency”,
    Adv. Mater., 2008, 20, 54.
  4. M. Wagemaker, A. P.M. Kentjens, and F. M. Mulder, “Equilibrium lithium transport between
    nanocrystalline phases in intercalated TiO2 anatase”, Nature, 2002, 418, 397.
  5. Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B., “ TiO2(B) Nanowires
    as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.
    5O4 Cathodes and a Polymer Electrolyte”, Adv. Mater., 2006, 18, 2597.
  6. D. Wang, A. Chen,   S. H. Jang, H. L. Yip and   A. K.-Y. Jen, “Sensitivity of titania(B)
    nanowires to nitroaromatic and nitroamino explosives at room temperature via surface
    hydroxyl groups”, J. Mater. Chem., 2011, 21, 7269.
  7. J.H. Park, S. Kim, and A.J. Bard, “Novel carbon-doped TiO2 nanotube arrays with high
    aspect ratios for efficient solar water splitting”, Nano Letters, 2006, 6, 24.
  8. Zeng, T.-W.; Lin, Y.-Y.; Lo, H.-H.; Chen, C.-W.; Chen, C.-H.; Liou, S.-C.; Huang, H.-Y.;
    Su, W.-F., “A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod
    photovoltaic devices”, Nanotechnology, 2006, 17, 5387.
  9. Lin, Y. Y.; Chu, T. H.; Li, S. S.; Chuang, C. H.; Chang, C. H.; Su, W. F.; Chang, C. P.; Chu,
    M. W.; Chen, C. W., “ Interfacial Nanostructuring on the Performance of Polymer/TiO2
    Nanorod Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc., 2009, 131, 3644.
  10. Wang, Q.; Wen, Z. H.; Li, J. H., “A Hybrid Supercapacitor Fabricated with a Carbon
    Nanotube Cathode and a TiO2–B Nanowire Anode”, Adv. Funct. Mater. 2006, 16, 2141.
  11. L. Francioso,  A. Forleo, A. M. Taurino, and P. Siciliano, “Nanofabrication of TiO2 nanowires:
    I-V characteristic and improvement of metal oxides gas sensing properties”,  Proc. SPIE
    6589, Smart Sensors, Actuators, and MEMS III, 2007, 658913.
  12. S. S. Mandal, and A. J. Bhattacharyya, “Titania nanowires as substrates for sensing and
    photocatalysis of common textile industry effluents”, Talanta, 2010, 82, 876.
  13. I. Chauhan, S. Chattopadhyay, and P. Mohanty, “Fabrication of titania nanowires
    incorporated paper sheets and study of their optical properties”, Materials Express, 2013,
    3, 343.
  14. Ru-Hua Tao, Jin-Ming Wu, Hong-Xing Xue, Xiao-Mei Song, Xu Pan, Xia-Qin Fang, X. D.
    Fang, and S. Y. Dai, “A novel approach to titania nanowire arrays as photoanodes of back-
    illuminated dye-sensitized solar cells”, Journal of Power Sources, 2010, 195, 2989.
  15. J. X. Liu, D. Z. Yang, F. Shi, and Y. J. Cai, “Sol-gel deposited TiO2 film on NiTi surgical alloy
    for biocompatibility improvement,” Thin Solid Films, 2003, 429, 225.
  16. G. Giavaresi, L. Ambrosio, and L. Ambrosio, “Histomorphometric, ultrastructural and
    microhardness evaluation of the osseointegration of a nanostructured titanium oxide
    coating by metal-organic chemical vapour deposition: an in vivo study,” Biomaterials, 2004,
    25, 5583.
  17. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.;
    Gratzel, M., “Sequential deposition as a route to high-performance perovskite-sensitized
    solar cells”, Nature, 2013, 499, 316.

  • Fillers for various nanocomposites including nanowire polymer composites, nanowire metal
    composite, and nanowire ceramic composites
  • Fillers for various adhesives and paints
  • Fillers for various high performance films
  • Nanowire porous ceramic membranes for chemical and water filtration, which can used in
    strong acids and bases
  • High temperature non-woven textiles
  • White pigments for plastics, paints, rubbers, cosmetics, man-made fibers, papers, and
  • Surface coatings
  • Catalyst supports
  • Photocatalysts
  • Dye-sensitized, polymer-based, and quantum dot (QD) solar cells (photovoltaic and
    photocatalytic cells)
  • Water splitting for hydrogen production
  • Chemical sensors, especially high temperature gas sensors
  • Anodes of lithium ion batteries
  • Fuel cells
  • Supercapacitors
  • Detoxification
  • Drug delivery
  • Biosensors
  • Biocompatible materials for bone implants
  • Electrochromic devices