Products - Titanium Oxide Nanowires       
Research Grade
Industry Grade
Cat. No.
Production Description
Diameter
Length
Price
0.5g
1g
2g
5g
NovaWire-TiO-100-RD
Titanium oxide nanowires A,
Research grade
~100nm
~20um
$240
$390
$700
$1560
Cat. No.
Production Description
Diameter
Length
Price
5g
10g
20g
100g
NovaWire-TiO-100-IND
Titanium oxide nanowires A,
Industry grade
~100nm
~5um
$290
$490
$890
$2890
SEM image of NovaWire-TiO-100-RD
TEM image of NovaWire-TiO-100-RD
SEM image of NovaWire-TiO-10-RD
TEM image of NovaWire-TiO-10-RD
Cat. No.
Production Description
Diameter
Length
Price
0.5g
1g
2g
5g
NovaWire-TiO-10-RD
Titanium oxide nanowires B,
Research grade
~10nm
~10um
$240
$390
$700
$1560
Weight
Weight
Cat. No.
Production Description
Diameter
Length
Price
5g
10g
20g
100g
NovaWire-TiO-10-IND
Titanium oxide nanowires B,
Industry grade
~10nm
~5um
$290
$490
$890
$2890
Weight
Weight
Copyright © 2014 Novarials Corporation All rights reserved.
Applications

and nanowire ceramic composites
  • Fillers for various adhesives and paints
  • Fillers for various high performance films
  • Nanowire porous ceramic membranes for chemical and water filtration, which can used in strong acids
    and bases
  • High temperature non-woven textiles
  • White pigments for plastics, paints, rubbers, cosmetics, man-made fibers, papers, and ceramics
  • Surface coatings
  • Catalyst supports
  • Photocatalysts
  • Dye-sensitized, polymer-based, and quantum dot (QD) solar cells (photovoltaic and photocatalytic
    cells)
  • Water splitting for hydrogen production
  • Chemical sensors, especially high temperature gas sensors
  • Anodes of lithium ion batteries
  • Fuel cells
  • Supercapacitors
  • Detoxification
  • Drug delivery
  • Biosensors
  • Biocompatible materials for bone implants
  • Electrochromic devices
Synonym

Titanium oxide nanowires, titanium oxide nanofibers, titanium oxide, titania nanowires, titania nanofibers,
titania, titanium dioxide nanofibers, titanium dioxide nanowires, titanium dioxide, titanium(IV) oxide
nanowires, titanium(IV) oxide nanofibers, titanium(IV) oxide, TiO
2 nanowires, TiO2 nanofibers, TiO2,  titanium
oxide nanowire, titanium oxide nanofiber, titania nanowire, titania nanofiber, titanium dioxide nanofiber,
titanium dioxide nanowire, titanium(IV) oxide nanowire, titanium(IV) oxide nanofiber, TiO
2 nanowire, TiO2
nanofiber
HOME                    PRODUCTS                       TECHNOLOGIES                       SERVICES                         ABOUT US
References
  1. In Sun Cho, Chi Hwan Lee, Yunzhe Feng, Manca Logar, Pratap M. Rao, Lili Cai, Dong Rip Kim, Robert
    Sinclair, Xiaolin Zheng,  “Codoping titanium dioxide nanowires with tungsten and carbon for enhanced
    photoelectrochemical performance”, Nature Communications,  2013, 4, 1723.
  2. Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B., “ Enhancing visible light photo-
    oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects
    between Ti3+ and N.”, J. Am. Chem. Soc., 2012, 134, 3659.
  3. Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung, Y. E., “ Nanorod-Based Dye-
    Sensitized Solar Cells with Improved Charge Collection Efficiency”, Adv. Mater., 2008, 20, 54.
  4. M. Wagemaker, A. P.M. Kentjens, and F. M. Mulder, “Equilibrium lithium transport between
    nanocrystalline phases in intercalated TiO2 anatase”, Nature, 2002, 418, 397.
  5. Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B., “ TiO2(B) Nanowires as an
    Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes
    and a Polymer Electrolyte”, Adv. Mater., 2006, 18, 2597.
  6. D. Wang, A. Chen,   S. H. Jang, H. L. Yip and   A. K.-Y. Jen, “Sensitivity of titania(B) nanowires to
    nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups”, J. Mater.
    Chem., 2011, 21, 7269.
  7. J.H. Park, S. Kim, and A.J. Bard, “Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for
    efficient solar water splitting”, Nano Letters, 2006, 6, 24.
  8. Zeng, T.-W.; Lin, Y.-Y.; Lo, H.-H.; Chen, C.-W.; Chen, C.-H.; Liou, S.-C.; Huang, H.-Y.; Su, W.-F., “A
    large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices”,
    Nanotechnology, 2006, 17, 5387.
  9. Lin, Y. Y.; Chu, T. H.; Li, S. S.; Chuang, C. H.; Chang, C. H.; Su, W. F.; Chang, C. P.; Chu, M. W.; Chen,
    C. W., “ Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction
    Solar Cells”, J. Am. Chem. Soc., 2009, 131, 3644.
  10. Wang, Q.; Wen, Z. H.; Li, J. H., “A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode
    and a TiO2–B Nanowire Anode”, Adv. Funct. Mater. 2006, 16, 2141.
  11. L. Francioso,  A. Forleo, A. M. Taurino, and P. Siciliano, “Nanofabrication of TiO2 nanowires: I-V
    characteristic and improvement of metal oxides gas sensing properties”,  Proc. SPIE 6589, Smart
    Sensors, Actuators, and MEMS III, 2007, 658913.
  12. S. S. Mandal, and A. J. Bhattacharyya, “Titania nanowires as substrates for sensing and
    photocatalysis of common textile industry effluents”, Talanta, 2010, 82, 876.
  13. I. Chauhan, S. Chattopadhyay, and P. Mohanty, “Fabrication of titania nanowires incorporated paper
    sheets and study of their optical properties”, Materials Express, 2013, 3, 343.
  14. Ru-Hua Tao, Jin-Ming Wu, Hong-Xing Xue, Xiao-Mei Song, Xu Pan, Xia-Qin Fang, X. D. Fang, and S. Y.
    Dai, “A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized
    solar cells”, Journal of Power Sources, 2010, 195, 2989.
  15. J. X. Liu, D. Z. Yang, F. Shi, and Y. J. Cai, “Sol-gel deposited TiO2 film on NiTi surgical alloy for
    biocompatibility improvement,” Thin Solid Films, 2003, 429, 225.
  16. G. Giavaresi, L. Ambrosio, and L. Ambrosio, “Histomorphometric, ultrastructural and microhardness
    evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic
    chemical vapour deposition: an in vivo study,” Biomaterials, 2004, 25, 5583.
  17. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M.,
    “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature,
    2013, 499, 316.
Ceramic Nanowires
Semiconductive Nanowires
Metallic Nanowires
Compound Nanowires
Coating and Membrane
Grade Nanowires
Ceramic Nanotubes
Other Nanostructures
 
 
Online Store
Payment Methods