Products - Titanium Oxide Nanowires IA   
Industry Grade
Cat. No.
Production Description
Titanium oxide nanowires IA,
Industry grade
HOME                    PRODUCTS                       TECHNOLOGIES                       SERVICES                         ABOUT US
Average diameter: 100nm
Appearance: wet cake, or dry white powder

Novarials now supplies this product in kilogram scale for industry users, please contact us at
Copyright © 2014 Novarials Corporation All rights reserved.

Titanium oxide nanowires, titanium oxide nanofibers, titanium oxide, titania nanowires, titania
nanofibers, titania, titanium dioxide nanofibers, titanium dioxide nanowires, titanium dioxide,
titanium(IV) oxide nanowires, titanium(IV) oxide nanofibers, titanium(IV) oxide, TiO2 nanowires,
TiO2 nanofibers, TiO2,  titanium oxide nanowire, titanium oxide nanofiber, titania nanowire,
titania nanofiber, titanium dioxide nanofiber, titanium dioxide nanowire, titanium(IV) oxide
nanowire, titanium(IV) oxide nanofiber, TiO2 nanowire, TiO2 nanofiber
  1. In Sun Cho, Chi Hwan Lee, Yunzhe Feng, Manca Logar, Pratap M. Rao, Lili Cai, Dong Rip
    Kim, Robert Sinclair, Xiaolin Zheng,  “Codoping titanium dioxide nanowires with tungsten
    and carbon for enhanced photoelectrochemical performance”, Nature Communications,  
    2013, 4, 1723.
  2. Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B., “ Enhancing visible light
    photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3:
    synergistic effects between Ti3+ and N.”, J. Am. Chem. Soc., 2012, 134, 3659.
  3. Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung, Y. E., “
    Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency”,
    Adv. Mater., 2008, 20, 54.
  4. M. Wagemaker, A. P.M. Kentjens, and F. M. Mulder, “Equilibrium lithium transport between
    nanocrystalline phases in intercalated TiO2 anatase”, Nature, 2002, 418, 397.
  5. Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B., “ TiO2(B)
    Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or
    LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte”, Adv. Mater., 2006, 18, 2597.
  6. D. Wang, A. Chen,   S. H. Jang, H. L. Yip and   A. K.-Y. Jen, “Sensitivity of titania(B)
    nanowires to nitroaromatic and nitroamino explosives at room temperature via surface
    hydroxyl groups”, J. Mater. Chem., 2011, 21, 7269.
  7. J.H. Park, S. Kim, and A.J. Bard, “Novel carbon-doped TiO2 nanotube arrays with high
    aspect ratios for efficient solar water splitting”, Nano Letters, 2006, 6, 24.
  8. Zeng, T.-W.; Lin, Y.-Y.; Lo, H.-H.; Chen, C.-W.; Chen, C.-H.; Liou, S.-C.; Huang, H.-Y.;
    Su, W.-F., “A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod
    photovoltaic devices”, Nanotechnology, 2006, 17, 5387.
  9. Lin, Y. Y.; Chu, T. H.; Li, S. S.; Chuang, C. H.; Chang, C. H.; Su, W. F.; Chang, C. P.;
    Chu, M. W.; Chen, C. W., “ Interfacial Nanostructuring on the Performance of Polymer/TiO2
    Nanorod Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc., 2009, 131, 3644.
  10. Wang, Q.; Wen, Z. H.; Li, J. H., “A Hybrid Supercapacitor Fabricated with a Carbon
    Nanotube Cathode and a TiO2–B Nanowire Anode”, Adv. Funct. Mater. 2006, 16, 2141.
  11. L. Francioso,  A. Forleo, A. M. Taurino, and P. Siciliano, “Nanofabrication of TiO2 nanowires:
    I-V characteristic and improvement of metal oxides gas sensing properties”,  Proc. SPIE
    6589, Smart Sensors, Actuators, and MEMS III, 2007, 658913.
  12. S. S. Mandal, and A. J. Bhattacharyya, “Titania nanowires as substrates for sensing and
    photocatalysis of common textile industry effluents”, Talanta, 2010, 82, 876.
  13. I. Chauhan, S. Chattopadhyay, and P. Mohanty, “Fabrication of titania nanowires
    incorporated paper sheets and study of their optical properties”, Materials Express, 2013,
    3, 343.
  14. Ru-Hua Tao, Jin-Ming Wu, Hong-Xing Xue, Xiao-Mei Song, Xu Pan, Xia-Qin Fang, X. D.
    Fang, and S. Y. Dai, “A novel approach to titania nanowire arrays as photoanodes of back-
    illuminated dye-sensitized solar cells”, Journal of Power Sources, 2010, 195, 2989.
  15. J. X. Liu, D. Z. Yang, F. Shi, and Y. J. Cai, “Sol-gel deposited TiO2 film on NiTi surgical alloy
    for biocompatibility improvement,” Thin Solid Films, 2003, 429, 225.
  16. G. Giavaresi, L. Ambrosio, and L. Ambrosio, “Histomorphometric, ultrastructural and
    microhardness evaluation of the osseointegration of a nanostructured titanium oxide
    coating by metal-organic chemical vapour deposition: an in vivo study,” Biomaterials, 2004,
    25, 5583.
  17. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.;
    Gratzel, M., “Sequential deposition as a route to high-performance perovskite-sensitized
    solar cells”, Nature, 2013, 499, 316.

  • Fillers for various nanocomposites including nanowire polymer composites, nanowire metal
    composite, and nanowire ceramic composites
  • Fillers for various adhesives and paints
  • Fillers for various high performance films
  • Nanowire porous ceramic membranes for chemical and water filtration, which can used in
    strong acids and bases
  • High temperature non-woven textiles
  • White pigments for plastics, paints, rubbers, cosmetics, man-made fibers, papers, and
  • Surface coatings
  • Catalyst supports
  • Photocatalysts
  • Dye-sensitized, polymer-based, and quantum dot (QD) solar cells (photovoltaic and
    photocatalytic cells)
  • Water splitting for hydrogen production
  • Chemical sensors, especially high temperature gas sensors
  • Anodes of lithium ion batteries
  • Fuel cells
  • Supercapacitors
  • Detoxification
  • Drug delivery
  • Biosensors
  • Biocompatible materials for bone implants
  • Electrochromic devices